The idealism of quantum mechanics
In part one, we discussed the contradictions within the Standard Model of Big Bang Cosmology. The other three main pillars of cosmology – quantum mechanics, the SMPP [Standard Model of Particle Physics], and general relativity – are not without glaring problems. In most cases, these are of a more theoretical, dare it be said, philosophical nature.
Quantum mechanics whilst consistently being validated by experiments still raises fundamental questions in terms of the interpretation of its results. The dominant paradigm in the field of quantum mechanics is that of the Copenhagen School, named after the Danish physicist, Niels Bohr, who founded this interpretation. According to this paradigm, the state of a particle is not an objective reality, but merely a probability, expressed in terms of a wave function. The “wave function”, however, is no more than a mathematical construct – an equation; an abstract model created by human mathematicians, but promoted to become the basis of all reality by the Copenhagen School of philosophy.
This probabilistic interpretation of the behaviour of atomic and sub-atomic particles means that uncertainty is inherent within any quantum system; the old predictability provided by Newtonian mechanics is lost, and so with it, all sense of causality and law in nature. Given the small scale and high speeds involved at the quantum level, a degree of probability and uncertainty is indeed inevitable. However, the Copenhagen School takes things to an extreme and denies the existence of objective reality, law, and causality altogether.
With this interpretation of quantum mechanics, therefore, we are back to the idealism of the philosophy of Kant, of the “unknowable” thing-in-itself; to the idea of a reality whose true objectivity will always be a mystery to us. This runs counter to the very fundamentals of the science which is based on a materialist method and which asserts that there is lawfulness in nature. Through the process of scientific experimentation and investigation, the inner workings of the Universe can be known to us. This materialist philosophy, which is at the root of both the scientific method and of Marxism, explains that there is no such thing as the “unknowable”, but simply that which is currently unknown.
Even more than that, Bohr and his followers claimed that the properties of a particle are simultaneously all values – in a state of “superposition” – until the point of measurement, at which time the wave function of a particle is said to “collapse” to a single state. This interpretation ultimately leads to a form of subjective idealism, in which there is no objective reality other than that which we observe – a modern day form of the philosophical question: if a tree falls in the woods and there is nobody around to hear it, does it still make a sound?
The obvious conundrum is: according to the Copenhagen interpretation, at what point in the “act of observation” do the quantum probabilities of the wave function become a reality? At what point does the subjective act of measurement become an objective fact? At the time, the Austrian physicist Erwin Schrödinger mocked the Copenhagen interpretation, devising the famous thought experiment of “Schrödinger’s cat” to show the absurdity of Bohr’s view, which would lead to the result that a cat, placed in a box along with a certain setup of radioactive equipment, could be said to be both dead and alive at the same time until the point of observation!
The implications of the Copenhagen School are that certain experiments involving quantum systems yield results that are seemingly supernatural. Specifically there is the phenomenon of “entanglement”, in which two particles can be “entangled”, in such a way that a property of one particle is always the opposite of the equivalent property of its partner. The two particles are initially in a state of superposition, in which the properties of neither particle are known, but when the property of one particle is observed and the wave function collapses, the property of the second particle can be inferred by the knowledge of the first. The result is that two quantum particles, separated at large distances, seem to be able to communicate information instantaneously to one-another, thus breaking the ultimate limit of the speed of light. This phenomenon has yet to be explained by current quantum theories.
Of course, in measuring any aspect of nature, we are forced to interact with the system under observation, and in doing so we have an effect on the properties of the system itself. We cannot place ourselves outside of nature in order to observe it. Scientific experimentation is interactive, in essence a process of applying labour to nature in order to understand its internal relationships, inner causality, and interconnections. But to deny the objectivity of reality and to claim that there is no reality until observation occurs, is to retreat into subjective idealism, into solipsism. It is a retreat ultimately into mysticism, back into the divine realm of the “unknowable” reality beyond the reach of science and thus beyond the possibilities of human understanding also. “God”, as we are repeatedly told, “moves in mysterious ways”.
The materialist method of science, and of Marxism also, is based on the fundamental principle that there is an objective reality, which exists independently of human observation but which we can be known to us. As Lenin explained, when ridiculing the subjectivists, who argued that the world ceased to exist outside of the minds of humankind,
“Things exist independently of our consciousness, independently of our perceptions, outside of us…” [1]
“…[T]he existence of the thing reflected independent of the reflector (the independence of the external world from the mind) is a fundamental tenet of materialism. The assertion made by science that the earth existed prior to man is an objective truth.” [2]
What is mass?
The SMPP also leaves scientists scratching their heads in confusion. The main cause of the confusion is the complete lack of rhyme or reason behind the various particles that have been postulated. No pattern can be discerned that explains the complex variety of matter that exists.
There is also the particular question of mass. Why do particles have the masses that they do? What causes mass in the first place? And just what is “mass” in the first place?
In general physical terms, mass is a property of all matter. Newtonian physics explains mass in terms of inertia – the resistance of matter to acceleration, that is, a resistance to changes in motion. In the Newtonian paradigm, changes in motion are explained by the concept of “force” – something conceived of as being purely external to the object in question.
This one-sided view reflects the mechanical view of the whole Newtonian paradigm. A dialectical view, by contrast, sees the interconnectivity and two-sidedness of any process, including the change in motion of matter. As Engels explains in his great unfinished work, The Dialectics of Nature,
“All natural processes are two-sided, they are based on the relation of at least two operative parts, action and reaction. The notion of force, however, owing to its origin from the action of the human organism on the external world, and further terrestrial mechanics, implies that only one part is active, operative, the other part being passive, receptive…The reaction of the second part, on which the force works, appears at most as a passive reaction, as a resistance. Now this mode of conception is permissible in a number of fields even outside pure mechanics, namely, where it is a matter of the simple transference of motion and its quantitative calculation. But already in the more complicated physical processes it is no longer adequate…” [3]
Mass, as a resistance to changes in motion, can therefore only be defined as something relational between objects, in other words, in terms of an interaction between matter.
Furthermore, in the mechanical interaction of two objects, momentum, defined as mass multiplied by velocity (mv), is always conserved. The kinetic energy of matter in motion is given by the formula ½mv², whilst Einstein, with his famous equation E = mc², showed the equivalence of mass and energy. It is a well-known fact of nature that mass and energy must also always be conserved in any process. All of this further shows how mass can only properly be conceived of as a property of matter; a property that arises out of the relationships – i.e. the interactions – of matter in motion.
One of the great advances of the SMPP is that mass is no longer conceived of as being something inherent to an object. A mechanical and idealistic view of nature sees the properties of things as being something inherent and intrinsic. Thus it can be seen how in ancient times, the temperature (i.e. hotness) of an object was considered to be a result of it possessing a certain amount of the fire element. Likewise, in the seventeenth century, a substance called phlogiston was considered to give matter the property of combustibility. The colour of an object was once considered to be an inherent property of that object, so that red things are red because they have the property of redness. Or from the subjectivist viewpoint, colour is simply due to our individual sense perception. In the sphere of social sciences, the capitalists talk of “human nature”, as an innate selfishness of all people, to justify their exploitative system of greed. Meanwhile, the value of any commodity, according to bourgeois economic theory of “marginal utility”, is simply the result of the subjective preferences of abstract individuals.
Dialectical philosophy, backed up by all of the discoveries of modern science, demonstrates, in contrast, how the properties of things are always truly an expression of relationships between things. Properties emerge from the interactions between things. For example, thanks to modern theories of thermodynamics, we know that the temperature of an object is an expression of the motion of atoms and molecules, whilst combustion today is known as a chemical interaction between a fuel and an oxidant. The property of colour is now known to arise out of the interaction between light (photons) and the electrons in the atoms of an object. These absorb photons of certain frequencies (energy values in quantum terms) and emit photons at certain other specific frequencies which are in turn detected by receptor cells in the eyes and turned into electric nerve signals to be interpreted by the brain.
The Marxists, that is, dialectical and materialist view of history and the economy, explains how human behaviour is a product of society and the mode of production, whilst the value of a commodity is an expression of a social relation, which can only be determined through the act of exchange.
In the SMPP, the mass of any particle is no longer inherent or intrinsic, but is described in terms of the interaction between the particle and the “Higgs field”, via a carrying particle known as the “Higgs boson”. Whilst this conception of mass as an interactive property of matter is a step forward, the use of the Higgs field and the Higgs boson to explain this in reality explains nothing. What creates the Higgs field? How does the three-way interaction between the Higgs field, the Higgs boson and other particles give rise to the property of mass? And why does this interaction provide particles with the values of the masses that we observe? Furthermore, there is the less well-reported problem that the Higgs theory only accounts for a fraction of the mass of matter.
As with the examples of the “inflaton” particle in relation to inflation, the “graviton” particle and the force of gravity, or “WIMPs” and the question of dark matter, in resorting to terms such as “field” and “boson”, scientists have simply applied labels and invented new hypothetical particles to account for unexplained phenomena. A real understanding of mass as an emergent property must arise, however, not out of mysterious fields and “God particles”, but from studying the way matter interacts with other matter. This is the only truly materialist – that is, scientific – way of explaining any phenomena in nature.
“Fundamental” particles
The question of why various particles have the mass they do arises from the same confusion. But there are also others sides to this issue and other questions that have not been asked. Why should the masses of the various “fundamental” particles have a nice pattern to them? Why should nature always display “beauty” in its arrangements? And why do we consider these “fundamental” particles to be “fundamental” at all?
The first two questions highlight one of the main problems in modern cosmology – the tremendous philosophical idealism that has crept in, whereby theories are considered right or wrong on the basis of mathematical aesthetics. Our models and theories are always and everywhere only an approximation of a Universe that is infinitely complex in every way. In many cases, at certain scales, simplicity arises out of complexity – and vice-versa. Thus the complexity of nature can sometimes be expressed by relatively simple equations. But to assume and seek out simplicity in nature is to turn the whole problem on its head. Our ideas, mathematical, scientific or otherwise, are a reflection of the world around us, not other way around. This is the fundamental basis of materialism in science and Marxism. Whether ideas, theories, or equations are “beautiful” or not, their usefulness is contingent upon how accurately they reflect material reality and allow us to gain a deeper understanding of the workings of nature. To assert that nature must conform to our subjective idea of beauty is pure idealism.
The third question concerning the “fundamentality” of the particles in the SMPP is related to the first two. Where we expect to see patterns in nature as a result of our theories— which are the generalisations of our past observations—but instead see inexplicable randomness, this suggests that a deeper understanding of the causal relationships and interconnections of the phenomena is necessary.
The so-called “uncertainty principle” in quantum mechanics is a case in point. We observe phenomena at the atomic and sub-atomic levels that are seemingly random and which the current theories cannot explain. But rather than delving deeper in order to reveal the real inner connections within these phenomena, the advocates of the Copenhagen School simply erect a barrier of mysticism and declare the inner workings at the quantum scale to be “unknowable”. This is counter to the whole history and method of science, the task of which has always been to find explanations for what was previously thought inexplicable, to provide predictability where there was once uncertainty and to uncover laws where before we saw only randomness.
Patterns and even generalised laws can emerge from seemingly random, chaotic, nonlinear, and unpredictable processes. For example, to model and predict the movement of every particle in a cylinder of gas would be impossible. But due to the interaction of many billions of gas particles, definite laws of thermodynamics arise that relate the pressure, temperature and volume of the gas. Patterns emerge from randomness; order arises from chaos; predictability is seen within the unpredictable. Even the processes of quantum mechanics, which is one of the few examples of a process that is still considered to be truly random, produce predictable results and patterns, like the famous interference patterns seen in the double-slit experiment.
Over time, through the development and deepening of scientific understanding, statistical relationships that simply describe patterns and phenomena may be replaced by physical models or scientific laws that explain the interconnectedness and causal relationships within these phenomena. Even so-called scientific “laws”, however, are only accurate at certain scales and within certain limits. Such laws are always only an approximation of objective reality and will always contain errors, inaccuracies, and uncertainty to a certain degree.
In the case of the SMPP, the problem is in assuming that we can talk of “fundamental” particles at all. The whole history of the science of physics has been to continually reduce and shrink what we consider to be the “fundamental” building blocks of nature. First there was the concept of the atom – originally hypothesised by the ancient Greek philosopher Democritus (the word “atom” derives from the Greek for “indivisible”). Later came the discoveries by Rutherford, who came up with an atomic model consisting of electrons, protons, and neutrons. Further research led to the discovery of quarks, which make up protons and neutrons. Who is to suggest that quarks now represent the limit of scientific discovery in terms of particle physics?
The difficulty for many scientists lies in the answer to this question. If we assume that quarks are composed of even smaller particles, then what are these smaller particles composed of? And so on, and so on, ad infinitum. But that is precisely the point – one can always divide further. Just as there is no such thing as an indivisible “smallest” number, so there is no “fundamental” particle in nature.
A century ago, the main chemical and physical differences between all one hundred or so elements was discovered to be based on a relatively simple underlying pattern that involved different combinations of no more than three “fundamental” sub-atomic particles. This discovery marked an important step forward in understanding the structure of matter. Now, the variety of sub-atomic particles postulated runs into dozens and science is no further forward in understanding any underlying pattern.
The solution to the question of so-called “fundamental” particles lies in an infinite series of finite objects – an infinite regression of things composed of other things. And it is the interaction between things at each stage of this series that gives rise to the properties that emerge at higher levels.
This is the answer to problems of the SMPP and of quantum mechanics also. Where our current theories cannot explain what we currently see, we must delve deeper in the search for a true, more accurate and complete description of nature; it is a search that has no limit, because of the limitless complexity of the Universe in every direction.
Irreconcilable theories
On top of all these problems with the various cosmological theoretical components described above, there is one issue that bothers scientists in the field above all else: the incompatibility of the different pillars of modern cosmology, and in particular, the irreconcilability of quantum mechanics and the SMPP with general relativity.
Most of the time this incompatibility is not relevant, as quantum mechanics only applies at small, sub-atomic scales, whilst general relativity is used to describe gravity and the effect of large masses on a cosmic scale. Under the SMBBC [Standard Model of Big Bang Cosmology] description of the Big Bang, however, all the matter of the entire Universe was initially said to be concentrated in a single point. Similarly, it is currently hypothesised that a singularity, with a finite amount of matter concentrated in an infinitesimally small point, exists at the centre of every black hole, formed from stars (of a certain mass) collapsing in on themselves under the strength of their own gravity. Such hypotheses pose large problems, as they involve dealing with both a small scale and a large mass – hence the attempts to reconcile these twin pillars of modern cosmology.
The irreconcilability of quantum mechanics and general relativity has many guises. Firstly, there is the way in which each theory treats space and time. In quantum mechanics, space and time are discrete, with a minimum length known as the “Planck length”. In general relativity, space – or more precisely, space-time – is continuous. The “fabric” of space-time is frequently referred to, with the analogy of objects rolling over a rubber sheet often used to explain how the force of gravity arises according to the theory of general relativity.
From a dialectical and materialist perspective, both interpretations of space and time are flawed, in that space and time are not things-in-themselves, but are relational expressions or properties of matter in motion. As discussed earlier in relation to “phase change” theories of the Big Bang, space and time are not tangible, material, physics objects, and cannot, therefore, be considered either continuous or discrete. To talk of “time” and “space” without reference to matter and motion is to talk about empty abstractions, devoid of any real content. Time, space, matter and motion are inseparable.
Secondly, there is the problem of the four “fundamental” forces described by these two theories. At the small scale, the SMPP describes electromagnetism, the strong nuclear force and the weak nuclear force in terms of the interactions between matter via bosons – force carrying particles. At the large scale, the fourth force, gravity, is explained without recourse to any “boson”, but via general relativity, with matter (mass-energy) affecting the curvature of space-time and space-time in turn affecting the motion of matter. Some have posited the existence of a “graviton”, a gravity boson, but its existence is as yet unproven.
The issue with the question of how the four “fundamental” forces arise, and the divergence in how the SMPP and General Relativity explain these forces, is a result of the mechanical and one-sided view of what “force” means in the first place, as discussed earlier. This results from the Newtonian paradigm of the laws of motion, in which each object is analysed in isolation, with the change in motion of any object being due to an external force. This is expressed in physical terms as force being equivalent to change in momentum and it is often simplified to F = ma, where F is force, m is mass and a is acceleration (a change in velocity).
To express changes in motion in such a way, however, is to portray each term of the equation as something tangible, with an external force that acts on an object (with mass) and causes a change in motion (an acceleration). In other words, we resort to a form of idealism, in which the elements of the equation, which are themselves abstractions, are conceived of as real, material things. The reality, however, is matter in motion, in all its complexity, which can never fully be captured by any formula. All laws, equations, and mathematical models are simply useful abstractions of this dynamic and interconnected motion.
Science has unfortunately been stuck with this mechanical Newtonian view ever since, which works its way into every field of investigation. Where there is motion, we assume there is a force responsible for such motion. From the standpoint of dialectical materialism, however, the motion of matter is primary. Any “force” is merely an expression of the relationship between changes in motion when matter mutually interacts. To assign a force to any form of motion we do not understand is simply to cover for our current lack of understanding of the phenomena under investigation. Going one step further by saying that forces are due to “force-carrying particles” is no better. One might as well say that heat is due to hotness. As Engels explains:
“[I]n order to save having to give the real cause of a change brought about by a function of our organism, we substitute a fictitious cause, a so-called force corresponding to the change. Then we carry this convenient method over to the external world also, and so invent as many forces as there are diverse phenomena.” [6]
There is no reason, therefore, why the three “forces” described by the SMPP should be described in the same terms as the “force” of gravity. The SMPP and general relativity are, like all models, only approximations which describe the motion of matter at different scales. But the laws for how matter interacts are not necessarily the same at different scales. At a certain point, quantity transforms into quality and different phenomena, with different laws, emerge.
We have, for example, as described earlier, the laws of thermodynamics which emerge from the multitude of interactions that take place between large numbers of particles and which describe properties such as temperature and pressure, both properties that are meaningless when talking about an individual particle. In other words, we have phenomena in which the whole is more than the sum of its parts.
Similarly, the laws of chemistry, describing interactions at the atomic and molecular level, cannot be used to predict the behaviour of a whole biological organism. Likewise, knowledge of biological laws does not give much insight into the emergent patterns and general laws that can be observed in history, society, and the economy; for this, one requires the materialist method of Marxism.
What is a law?
The same reasoning explains why quantum mechanics and general relativity are incompatible: because both are, like all laws or theories, only approximations that can describe the motion of matter within certain limits. As Engels explains:
“[T]here is absolutely no need to be alarmed at the fact that the stage of knowledge which we have now reached is as little final as all that have preceded it…Truth and error, like all thought-concepts which move in polar opposites, have absolute validity only in an extremely limited field…As soon as we apply the antitheses between truth and error outside of that narrow field which has been referred to above it becomes relative and therefore unserviceable for exact scientific modes of expression; and if we attempt to apply it as absolutely valid outside that field we really find ourselves altogether beaten: both poles of the antithesis become transformed into their opposites, truth becomes error and error truth.” [5]
The role of science is to continually improve our models in order extend their usefulness; to increase our understanding of all forms of motion and to gain a greater accuracy of prediction. Thus was the basis for the leap from Newtonian mechanics to the theories of relativity and quantum mechanics. Newton’s laws are adequate for most day-to-day experiences but cannot explain motion at small scales or at high speeds.
This then, is the infinite regression of scientific progress – a series represented by successive generations of research, which overtime expand our understanding further and come closer to approximately and capturing the infinitely complex nature of the Universe. As Lenin comments:
“Human thought then by its nature is capable of giving, and does give, absolute truth, which is compounded of a sum-total of relative truths. East step in the development of science adds new grains to the sum of absolute truth, but the limits of the truth of each scientific proposition are relative, now expanding, now shrinking with the growth of knowledge.” [6]
Quantum mechanics and general relativity are excellent theories that have been proven to provide accurate predictions within certain limits. To try and unify the two, however, is a futile task, for they are describing motion at different scales, each with its own set of laws that emerge out of the interaction of matter in motion at those scales.
The main reason for the attempts to unify these theories is because of the Big Bang hypothesis – a hypothesis that is itself far from proven. What is more, even if there were such a point when a large mass was concentrated at a small scale, this would necessarily involve new forms of interactions between matter, meaning new emergent laws, which would be different from those described by quantum mechanics, general relativity, or even a formalistic combination of the two. The whole is always more than the sum of its parts.
All talk, therefore, of a “Theory of Everything” is utopian. All theories are relative truths, approximations of the dynamics of motion within limits. Scientific laws in nature, as with any laws in history, the economy, or society, are not cast-iron laws, but are more accurately described as “tendencies”: generalisations arising from the processes of matter in motion, in which similar conditions produce similar results. There is no law that is absolute, universally applicable to all situations at all times and at all scales.
To hypothesise the possibility of such an absolute law is to view the Universe idealistically, to see “laws” as primary and the material world as a secondary reflection of these laws. The dialectical materialist view asserts the opposite: matter in motion is primary and the laws of nature emerge from the interactions of this matter. Such laws are not written into the fabric of the Universe, but are abstracted and generalised by science in order to better understand and manipulate the world around us. There is no “computer programmer in the sky” who has specified and described all the laws of nature in advance, pressing “go” and sitting back to watch motion unfurl according to these laws.
This is the idealistic concept of “laws” that has been inherited from the Newtonian paradigm and its mechanical “pure determinism” of a “clockwork Universe”, in which all future motion can be specified and predicted from a knowledge of initial conditions and the laws at play. The dialectical materialism of Marxism, confirmed by all of modern science, including the ideas of chaos theory, demonstrates how matter in motion is fundamental, our laws being only approximate descriptions of this complex dynamism and mutual interaction.
The only real “Theory of Everything”, therefore, is a theory, derived from the generalised experiences of the concrete process we see in nature, society, and thought, that describes the general laws of all motion; the laws of change itself. Such a theory is explained by the Marxist philosophy of dialectical materialism.
- Materialism and Empirio-Criticism, V.I. Lenin, p.110, Peking Publishers
- Ibid, p.137
- Dialectics of Nature, p.373-374
- Ibid, p.372
- Anti- Dühring, p.84
- Materialism and Empirio-Criticism, p.151